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Abstract - The present work deals with a numerical resolution of an inverse Stefan problem in 2D
case. It consists in identifying the moving solid-liquid interface in a melting material from temperature
measurements performed only on the solid phase. The space profile and time evolution of this interface
are simultaneously estimated by minimizing a penalized output least square criterion on the whole time
domain measurements. Fully discrete approach is adopted to establish the criterion gradient expression
and a quasi-Newtonian optimization method is used. Numerical results are presented to illustrate the
feasibility and efficiency of the proposed method with respect to the classical sequential method.

1. INTRODUCTION

It is known that the control of solid-liquid interface motions and the interface fluxes, in many industrial
applications of material processing (casting, welding, crystal growth,....), can lead to desired cast struc-
tures and mechanical properties in the final cast product [6]. Therefore the problem of determining the
interface position is of great interest. Direct measurement of this solid-liquid interface, is not realizable in
many situations, since the temperature sensors cannot be installed into the material. Also, an accurate
estimation of this interface, by resolution of the heat and mass transfer equations in both solid and liquid
phases is not possible, because many phenomena occurring in the liquid phase are complex to model and
partially unknown.

One way to obtain the time dependent interface is to identify it with an inverse approach from the
modeled solid phase only. While based on this idea, this identification problem has been solved in some
papers ([1], [5], [7]) in a sequential way, where the space profile of the interface is estimated for each time
step. In [2] a global identification of this interface, on the whole measurements time interval, is proposed.
It is numerically established in that work, that the proposed method is faster and more accurate than
the sequential one for the 1D case. For the 2D case, some theoretical results are presented in [3], but
without any numerical validation. However, the proposed continuous approach is not easy to implement
numerically. Also it cannot lead to satisfactory results in 2D or 3D cases since the discretization of the
continuous expression of the gradient does not lead to the discrete form of this gradient.

The aim of the present work is to propose a feasible method able to estimate simultaneously space
and time interface variations in 2D case. The method we suggest is based on the discrete Lagrangian
approach. We begin by discretizing the model equations and the penalized output least square criterion.
Then a discrete Lagrangian and discrete adjoint state are introduced and by means of some derivations,
the exact expression of discrete criterion gradient is established. A quasi-Newtonian method can be used
to minimize the regularized criterion on the whole time horizon.

The layout of this paper is as follows. In Section 2, we set and formulate the identification problem.
In Section 3, we transform the initial problem into a fixed domain. In Section 4, we present the dis-
cretization scheme for the model equations and the criterion gradient. In Section 5, we define a discrete
Lagrangian and we deduce the discrete gradient expression. In section 6, a test example is presented and
the proposed method is tested for various situations. In Section 7, the proposed method is compared
with the classical sequential method.

2. PROBLEM SETTING

A rectangular enclosure (width L, = 1, height L,) is filled with a material at uniform initial temperature
which is below the melting temperature of the material Ty. At time ¢ = 0, the temperature T'(z,y = Ly, t)
is suddenly increased above T'f; therefore the solid begins to melt.

The moving solid-liquid interface position is characterized by the function s(z,¢). Then the solid re-
gion is: Qs(t) = {(z,y) : 0 <z < 1; 0 < y < s(z,t)} with boundary 99Q4(¢t) = To UT; U Ty UT(t)
where Ty = {(z,0) : 0 <z < 1}, 1 = {(1,y) : 0 <y < Ly}, Iy = {(0,y) : 0 <y < Ly} and
L(t) = {(z,s(z,t)) : 0 <z < 1}.
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Using dimensionless variables, one gets the heat conduction equation in the time dependent solid do-
main:

—Au=0 in Q4(t) x (0,T). (1)
The boundary and initial conditions are:
uz =0 on (It UTy) x (0,7, (2)
uy = ¢(z,1t) on Iy x (0,7), (3)
u(z,y,0) =To in ©24(0), (4)
on the moving interface:
u=0 on I'(t) x (0, 7). (5)

The inverse problem, we are dealing with, consists in finding the solid-liquid interface position s(z, t)
from temperature measurements p(x,t) performed on the side 'y during the time interval (0,7).
As mentioned in the introduction, this problem has been considered in [1] [5] [7]. In all these works, the
time dependent interface position is estimated in a sequential way for the cited reason that the time and
space discretization of s(z,t) produce a large number of unknowns. To determine all these variables will
require an important time computing. However, the results obtained in [2] for the 1D case, shows that it
is possible to globally identify s(z,t) on the whole time horizon (0,T), in a time computing less than that
the sequential identification one. This is essentially due to the use of sensitivity equations to establish
the criterion gradient whereas in the sequential method case, this gradient is numerically calculated by
variations of the criterion.

In view of these results, we formulate the identification problem as follows:
minimize, with respect to s(z,t), the penalized least square criterion:

Ji = / / u(z,0,t) — p(z,t))*dedt + = / / 8:6875 )2 dxdt.

The first term represents the distance between the output model and the observed temperature ¢ and
the second term represents a weighted regularizing term introduced to deal with the ill-posedeness nature
of the inverse problem.

The problem is a nonlinear constrained one and posed it on a moving domain and solve it in this
form, is hard to do. The major difficulty comes from the fact that, in order to use a speedy optimization
method, we have to derive the criterion with respect to the moving boundary of domain. To overcome
this difficulty, we begin by transforming it in a fixed domain by means of an appropriate transformation.

3. PROBLEM TRANSFORMATION

The so-called Landau transformation allows us to map the physical moving domain into a fixed domain.
It consists in the variables change: z = s(g 7

Let:

v(z,z,t) = u(z,y,t) and Q= {(z,2): 0<z<1;0<2z<1}.

Assuming that:
52(0,t) = s.(1,t) =0,

we obtain, for eqns (1)-(5), the transformed system:

Vet av, +bug, + Uy — U =0 in Q x (0,7)

v(z,1,t) =0 O<z<l,
v2(0,2,t) = v, (1, 2,t) = 0<z<1, (6)
vy(x,0,t) = s(z,t)d(x, t) on Ty,
v(z,2,0) =Ty in €.
where the coefficients a, b, c are given by:
> 2
UG =2t — Zpp = _(_St + Sz — 2_1),
s s
b= 2,28—95,
s
1

c= —5—2(1 + 2252).
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Thus the criterion J; becomes :

T 1 ) o T 1 628 )
J1:/0 /O(U(:U,O,t)—go(:n,t)) da:dt+§/0 /O(M(:U,t)) dadt.

Now, J; has to be minimized with respect to a function appearing in the coefficients of the model
equations.

Most numerical optimization methods require the gradient of the function to be minimized. The
continuous expression of the gradient of J; can be established like in [3]. However, using a discretization
of this continuous expression does not lead, numerically to a satisfactory results. Thus we opt for the
fully discrete approach. We discretize the model eqns(6) and the criterion J; and then we seek for the
gradient of the discrete criterion.

4. PROBLEM DISCRETIZATION
Using an implicit scheme in time with a step dt, and a central finite difference scheme for space derivatives
with steps dz(= =) and dz(= --), the discretization of the system (6) leads to:

n _ yn-l1
% +aii(v2)i; + b5 (V)i + e (v22)l — (Vea)is =0, 1= 2,0,n05 § = 2,..,nz,
’Uininz—i-l) =0, i=1,...,n,+1
U8y — Uy _ Ulnetn)s ~Vmai _ 1
= - =0, j=1,..,n,, (7)
n o__ ,n
Ui2dZUi1 = s"gT, 1=2,...,n,,
y?j = Ty, i=1,.,n.+1, 7=1,...,n, +1,

for: n = 1,...,m (T = mdt), (.)j; denotes (.)(ndt, (i — 1)dz,(j — 1)dz), and the coefficients in the dis-
cretization are given by:

a = ﬁ[s?_l — i + Siy1 — 280 +siy 3(5?+1 - 5?71)2]
U dt (dx)? s 2dx ’
b — %[73?“ — S?—l]
U st 2dz ’
1 25141 ~ 5i1.o

Letting:
v" = (v?la ---:v?nm+1)(nz+1))TaQ = (Qov "'vym)Tv

s =(sP, st ) s = (0. 8™)

the system of eqns (7) can be written in the following matrix form:

’UO = T().
where )
n— . .
Vii 1=2,..,N3,] =2,...,N,
r?i—l)(nz+1)+j = S:L(b:L(dZ), i :2, ...,’I'Lx,j =1
0, otherwise

For simplicity, we do not give the detailed expression of the matrix A,. It is an (n, + 1)(n, + 1) matrix
depending of s"~! and s™.
Finally, we associate to J; the discrete criterion:

m  Ng m Ng

T(s) = 30 (0h = ol + 530S (s — sty — sl ) )

n=1 {=2 n=1 =2
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where ¢ is the regularization parameter.
Now we have to minimize J with respect to s?,i =2,...,n,; n=1,...,m.

5. LAGRANGIAN AND DISCRETE GRADIENT

The discrete criterion J depends implicitly on the interface s by means of the state v. To get the gradient
of this criterion, we introduce a discrete Lagrangian L and an adjoint state p independent of the s and
v. The Lagrangian is defined by the following expression: B

m

L(v,s,p) = J(s)+ >_(p" ") (App" — ™). (10)

n=1

We assume that: p™ = 0.
According to the well known Lagrangian’s calculus, the adjoint state p must verify:

Thus we have the adjoint system:

oJ 0
AT n-1_ _ 7Y - nT. n+ly _ .,n — 1
nl &) T e @ ) = wt n=m, (11)
p" =0.
where:
_2(1}?1 _90?)7 ZZQ,)”E)]:]-
w&_l)(nz_i_l)_i_j =4 P P =2, =2,..,1

0 otherwise

Since v is solution of discrete system (8) and p is solution of (11), the gradient of the discrete criterion
J is obtained by setting:

OL
(VH} = 50 1=2,.,N, n=1,..m.
i
Let:
m Ny
285 ZZ Sit1 — sy - 7,+1 +Sf 11)
i k=1 =2
Then, the gradient is expressed as follows :
17, 0An 0A, n "
atp 1T( 8.9 ) +I—) (Trjl)g i (dz)¢ pzl 7 n=L..,m-1,
(V)2 = ot ’ (12)
a +1_)”_1T( a7 " — (dz)plpl Y, n =m,

for: i=2,...,n
It is easy to establish that a and the (n, + 1)(n. + 1) matrices (%‘;‘;) and (82;;1) are obtained by
deriving, term by term, respectively, A,, and A, 1, with respect to s'.

6. NUMERICAL EXPERIENCE

6.1. Test Example
The proposed identification method is tested numerically with the following specifications: Tp = —1,
dx = 0.1 (n, = 10), dz = 0.04 (n, = 10), ¢(x,t) = 10, T =1, dt = 0.01(m = 100).

With the interface: s(z,t) = 0.4—0.16(1—e*)(1—cos(2wz))/2 we solve the discrete system of eqns(8)
to obtain the temperature v(z,0,¢) which will be taken as ¢(z,t) in the identification algorithm. Thus
we will expect to recover s(z,t) by inverse resolution with the proposed method.

Let us underline that we have set: s(0,t) = s(dz,t) = s(n.dz,t) = s(1,t) = 0.4 to satisfy numerically
the conditions s,(0,t) = s.(1,%) = 0. However, in the identification algorithm, the interface at the points
x = dzr and z = 1 — dz is supposed unknown and must be, also, estimated. Thus 900 unknowns have to
be determined.
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6.2. Optimization method
The mimimization of J is done using a quasi-Newtonian method implemented in MATLAB as a subroutine
called ”fminu”. The Hessian is updated at each iteration using Davidon-Fletcher-Powell formula. A Cubic
interpolation is used to estimate the minimum in the line search direction. The subroutine ”fminu”
requires: an initialization function noted sg, the expression (9) of J and expression (12) of gradient V.J.
The latter intervenes in the adjoint state system (11).

All computations are performed with the help of MATLAB on a PC (500Mhz, RAM=32Mbits).
To check the identification quality, the relative error between the computed interface s. and the exact

interface s, is defined as:
n=m z:=nm no_ on)2
Erm = \/an:ln%zQ (scz Si ) (13)

Yo" (s7)?

Let’s denote by T, the computing time required by the proposed method to achieve the identification.

6.3. Results

First we take the initialization function so(z,t) = s(x,0)/2 = 0.2 (mean value of the initial domain). The
convergence of the identification algorithm requires an € # 0. The behaviour of Erm as function of ¢,
shown in Table 1, is typical of a regularization method. We observe that € = 1 gives a good compromise
between accuracy and weak computing time.

€ Erm T.(min)
0.5 2.6810~* 38.7
1 257107 35
1.5 3.7410°* 34.5

Table 1. Errors and computing time versus €.

Figure 1 compares the calculated interface and the exact one for different instants. It shows, that the
estimated interface agrees well with the exact one except near the initial time where a weak oscillation
of the computed interface is observed. The latter remark is traditional ([2], [4]) and related to the
temperature discountinuities on the interface at the initial time.
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Interfaces s(x,t)

0.32

0.3

—— estimated
— exact

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1. Estimated and exact interfaces: € = 1, so(x,t) = 0.2.

If the identification algorithm is initiated by a function even further from the exact interface (so(z,t) =
0.01 for example), the algorithm convergence always requires regularization and the same results obtained
above remain valid.
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When the initialization function is the initial interface (so(z,t) = s(z,0) = 0.4) or very close to the
exact interface (so(x,t) = s(z,t) — 0.01 for example), the identification algorithm can converge without
regularization. This is due to the fact that the inverse problem used exact data generated by the direct
system. With a regularization € = 1, the accuracy of identification is increased and the time computing
is reduced. Figure 2 shows clearly the very good agreement.
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0.38

0.36

Interfaces s(x,t)

0.32

0.3

—— estimated
— exact

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2. Estimated and exact interfaces: e = 1, so(z,t) = 0.4.

7. COMPARISON WITH THE SEQUENTIAL METHOD
The aim of this section is to compare the method proposed here, denoted by Whole Time method (WTM),
with the classical sequential one.

The classical sequential method (SM) used in works ([1], [5], [7]) to identify the interface s(z,t) pro-
ceeds as follows: at time ¢ = (n+ 1)dt, the interface s is assumed to be time independent, its space profile
is obtained by minimizing J defined only on the time horizon [t,+1,tn4r]- The optimization procedure
is then resumed on the next time interval [¢,42,tnt14+] t0 get s(z,t,42). So, the identification of s on
the whole time [0,T] will require much computing time. Moreover, the gradient is evaluated by means
of numerical finite differences which increases the computing time.

7.1. Noiseless comparison

The WTM method is started with so(z,t) = s(x,0) = 0.4. We take the horizon length r = 10 in the SM.
We note according to Table 2, Figure 2 and Figure 3, that the WTM overrides the SM as well in

accuracy (107> compared to 1073) as in speed where it saves a very important time computing.

Methods Erm T.(min)
SM 7.71073 120
WTM 7.7310°° 26

Table 2. Comparison of the methods, noiseless case.

7.2. Noisy case comparison
To avoid ”inverse crimes phenomena”, we add to the simulated measurements ¢, a noise with 0.01% as
amplitude.

Table 3 indicates that always the WTM needs a computer time much less than the SM to estimate
the interface with approximately the same precision.

While comparing the noisy and noiseless cases, it can be observed that the WTM is more sensitive
to the noise (Errors passed from 1075 to 10~%) than the SM where the errors remain of the same order
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Figure 3. Sequential Method results.

of magnitude. Note from Figure 4, that it is difficult to correctly recover the interface near to the fixed

boundaries.
Methods Erm T.(min)
(SM) 7.8107° 109
(WTM) 7.310°3 27
Table 3. Comparison of the methods, 0.01% noisy case.
0.42
0.4p<==
0.38
Zo.36
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0.32
0.3
—— estimated WTM
—©— estimated SM
‘ ‘ — T exact
(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4. Whole Time and Sequential Methods, noisy case.
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8. CONCLUSIONS

Computational results show that the proposed whole time method is able to simultaneously estimate
time and space variation of the melting front and saves much computer time compared with the usual
sequential method. It is also more accurate. However, in the present work, the interface is identified
only on the discretization space and time points since all computations are carried out on the discrete
problem. The attempt to use an appropriate method such as the boundary element method to solve the
direct system (1)-(5) will be a future work.

REFERENCES

1. A. Afshari, Identification de I’Evolution d’un Front de Fusion/Solidification par Résolution Inverse de
I’Equation de la Chaleur dans le Domaine Solide, These d’Université Paris-Sud, Orsay, France, 1990.

2. A. El Badia and F. Moutazaim, A one-phase inverse Stefan problem. Inverse Problems (1999) 15,
1507-1522.

3. A. El Badia, On an inverse phase change problem, Inverse Problems in Engineering Mechanics II,
2000, pp.529-535.

4. N. L. Gold’man, Inverse Stefan Problems, Dordrecht, Kluwer, 1997.

5. B. Guerrier, H. Liu and C. Bénard, Estimation of the time-dependent profile of a melting front by
inverse resolution. J. Dynamic Syst. Meas. Control (1997) 119, 574-578.

6. W. Kurz and D. J. Fisher, Fundamentals of Solidification, Trans. Tech. Publications, Switzerland,
1989.

7. X. Wang, M. Rosset-Louerat and C. Bénard, Inverse problem identification of a melting front in 2D
case, Int. Ser. Numer. Math., 1992, Vol.107, pp.99-110.



